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Abstract—In this paper, we consider the problem of multiparty
deep learning (MDL), wherein autonomous data owners jointly
train accurate deep neural network models without sharing their
private data. We design, implement, and evaluate ∝MDL, a new
MDL paradigm built upon three primitives: asynchronous op-
timization, lightweight homomorphic encryption, and threshold
secret sharing. Compared with prior work, ∝MDL departs in
significant ways: a) besides providing explicit privacy guaran-
tee, it retains desirable model utility, which is paramount for
accuracy-critical domains; b) it provides an intuitive handle for
the operator to gracefully balance model utility and training
efficiency; c) moreover, it supports delicate control over com-
munication and computational costs by offering two variants,
∝MDLc and ∝MDLd, operating under loose and tight coordina-
tion respectively, thus optimizable for given system settings (e.g.,
limited versus sufficient network bandwidth). Through extensive
empirical evaluation using benchmark datasets and deep learning
architectures, we demonstrate the efficacy of ∝MDL.

I. INTRODUCTION

The recent advances in deep learning (DL) [1] have led

to breakthroughs in long-standing artificial intelligence tasks

(e.g., image recognition, language translation, and even play-

ing Go [2]), enabling use cases previously considered strictly

experimental. Such success is premised on the availability

of massive training data. Most deployed DL systems are

built upon large, centralized data repositories. This paradigm

abounds with privacy risks: often, data owners neither under-

stand nor have control over how their private data is being

used. Moreover, in a range of domains, notably those related to

healthcare, the sharing of personal information is forbidden by

regulations. Thus, following the centralized-training paradigm,

clinical sites and institutions can only perform analysis and

modeling over their own data, resulting in largely suboptimal

modeling and decision-making. In these cases, privacy and

confidentiality restrictions significantly impede the full exploit-

ation of data owned by these parties.

There thus emerges a critical need for multiparty deep

learning (MDL), wherein autonomous data owners jointly train

deep neural network (DNN) models without sharing their

private data yet benefitting from others’ data. Existing MDL

solutions [3], [4], [5] follow the model-sharing paradigm: each

party trains on its private data and shares its local model. The

global model is built by aggregating local models. As local

models may be reverse-engineered to reveal private data of

contributing parties [3], an oft-used remedy is to apply differ-

entially private randomization [6] to local models. However,

as each party operates under the local privacy context [7], the

injected randomization is often overly conservative, resulting

in significant utility loss in the global model.

Motivated by the observations above, we present ∝MDL,

a new MDL paradigm that, besides providing strong privacy

guarantee, retains desirable model utility. At a high level,

∝MDL ensures that participating parties learn the global model

(necessary for MDL to function) only if a sufficient number

of local models are aggregated, while no extra information

pertaining to individual local models is leaked in this process.

We show both empirically and analytically that this design

not only adds a new layer of privacy protection, but also

significantly improves the utility of the global model.

A series of unique features distinguish ∝MDL from prior

art. First, it achieves explicit privacy assurance and desirable

model utility simultaneously, which is paramount for accuracy-

critical domains (e.g., healthcare predictive modeling). Further,

it provides an intuitive handle for the operators to gracefully

balance model utility and training efficiency. Moreover, ∝MDL

supports delicate control over communication and computa-

tional costs. In specific, it offers two variants, coordinated- and

dynamic-∝MDL, operating under tight and loose coordination

respectively. Therefore, the operators may choose the variant

optimized for given system settings (e.g., limited versus suf-

ficient network bandwidth).

We empirically evaluate ∝MDL on varied benchmark data-

sets and DNN architectures. In all the cases, ∝MDL achieves

model utility close to the standalone, privacy-violating train-

ing, wherein a single party trains on the entire dataset. For

instance, over the SVHN dataset, ∝MDL obtains 91.4% accur-

acy (92.1% accuracy by the standalone training).

The remainder of the paper proceeds as follows. Section II

introduces the building blocks of ∝MDL; Section III presents

the high-level design of ∝MDL; Section IV and V elaborate the

two variants of ∝MDL, followed by their empirical evaluation

in Section VI; Section VII surveys relevant literature; the paper

is concluded in Section VIII.

II. PRELIMINARIES

A. Deep Learning

Deep learning (DL) represents a class of machine learning

algorithms which learn high-level abstraction of complex data

using multiple processing layers and non-linear transforma-

tions. We primarily focus on supervised learning, wherein the

training inputs are associated with “labels” while the goal is

to learn models to predict the labels for future inputs. Our

discussion is applicable to unsupervised learning as well.
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Figure 1: A schematic example of neural network.

Training a DNN model (see Figure 1) is to optimally con-

figure its parameters. Due to the model complexity, stochastic

gradient descent and its variants are often used [8]. During

each “epoch”, a set of “mini-batches” are sampled from the

training set. The gradient of each parameter w with respect to

the objective function (e.g., the cross entropy of the training

labels and the model’s outputs) is computed for every mini-

batch via a back-propagation procedure. The update rule for w
is w := w− λ�w, where λ is the learning rate and �w is the

gradient computed from the current mini-batch. This process

repeats until the objective function converges.
This procedure can be generalized to the case of multiple

parties: each party performs training using its own data; at the

end of each epoch, they share with each other their “local”

gradients; the local gradients of a parameter w are aggregated

to determine its global descent. The update rule for w is:

w := w − λ

∑
Ai∈A�i

w

|A| (1)

where A denotes the set of parties, Ai is the i-th party, and

�i
w is w’s gradient computed using the data owned by Ai.
Despite its efficiency [8], [9], this construction is potentially

privacy-violating: the local gradients are exploitable to reveal

sensitive information of contributing parties [3], [4]. We thus

consider local gradients as private information to be protected.

B. Attack Model
Like most other privacy-preserving machine learning frame-

works (e.g., [10], [11], [12], [5]), we assume a semi-honest

attack model: each party strictly follows the predefined pro-

tocol but is curious about the private information of other

parties; further, different parties may collude with each other,

attempting to infer a victim’s private information.
We remark that this threat model is realistic. Theoretically,

it is impossible to prevent malicious parties from invading

on a victim’s privacy at the cost of sabotaging the tasks. For

instance, all the malicious parties may empty their training

data to expose the victim’s private information in the training

outcome. Practically, in healthcare domains, clinical sites are

strongly incentivized to collaboratively train predictive models

with better demographical coverage and diagnosis accuracy

than models trained on their own data; yet, they may also be

interested to learn other parities’ data ownerships.

C. Cryptographic Building Blocks

Below we introduce two cryptographic primitives that serve

as the building blocks of ∝MDL.

a) Threshold Secret Sharing: Secret sharing represents a

set of cryptographic primitives that split and distribute a secret

amongst multiple parties, each allocated a share. The secret is

reconstructable only if a sufficient number of shares (e.g., m
out of n) are combined together, while individual shares are

of no use on their own.

We use the Shamir’s secret sharing protocol [13] as a con-

crete instance. This protocol is built upon the polynomial inter-

polation construction. Denote by θ0, θ1, . . . , θm−1 the integer

coefficients of a degree-(m − 1) polynomial f , i.e., f(x) =
θ0 + θ1x+ . . .+ θm−1x

m−1. With θ0 being the secret, it can

be reconstructed as: θ0 =
∑m−1

i=0 f(xi)
∏

0≤j≤m−1,j �=i
−xj

xi−xj
,

if any m distinct points: {(xi, f(xi))}m−1
i=0 are collected; with

less than m such points, it is impossible to compute θ0.

b) Homomorphic Encryption: Homomorphic encryption

allows the computation to be performed on the ciphertext and

generate an encrypted result which, when decrypted, matches

the result of the computation performed over the plaintext. In

the following, we use the ElGamal cryptosystem [14] as a con-

crete instance, which supports multiplicative homomorphism:

Enc(m) · Enc(m′) = Enc(m ·m′), where Enc(·) denotes the

encryption algorithm, · represents multiplication, and m,m′

are two plaintext messages.

Unlike fully homomorphic encryption [15] that supports ho-

momorphism for arbitrary functions, the cryptosystem above

only supports multiplicative homomorphism via modular ex-

ponentiation, thereby being practically efficient.

Also note that the cryptographic primitives above operate in

the integer space, while DL systems use floating numbers. A

simple solution is to multiply each number by a constant (e.g.

252 for IEEE 754 doubles) to support finite precision. Fortu-

nately, in most DL systems, due to regularization, parameters

are usually small (e.g., at the magnitude of 10−3). The type

transformation thus incurs fairly limited accuracy loss.

III. OVERVIEW OF ∝MDL

A. System Architecture

To build ∝MDL, we begin with the strawman construction

in Section II, which supports MDL, albeit in a privacy-violating

manner. We then overcome this limitation by building proper

privacy enhancing mechanisms (PEMs) into this construction.

Below we refer to each participating party as a “worker”.

At the core of this construction lies in the protocol of sharing

local gradients among the workers. Possible design options

include: the workers exchange local gradients directly, via a

centralized server, or by using secure multiparty computation

(SMC) primitives [16], [17] in an oblivious manner. All these

protocols can be unified by the abstraction of a virtual coordin-

ator (which we refer to as the “manager”), that aggregates the

local gradients uploaded by the workers and distributes the

computed global gradients back to them.

As shown in Figure 2, each worker A maintains a local

model while the manager M maintains a global model. During

the training, A trains its local model using the SGD algorithm

using its private data and influences others’ training indirectly
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Figure 2: Illustration of multiparty deep learning architecture.

via the global model at M . It is noted that once the training is

complete (i.e., the global model converges), each worker can

independently and privately evaluate the trained model over

new data, without interacting with other workers.

B. Basic Design

Now we incorporate proper PEMs into the basic construc-

tion. One straightforward solution is to perform differentially

private randomization [6] to the local gradients, with the hope

that releasing such local gradients does not overly leak the

private information of the local data [18], [5], which we refer

to as the local differential privacy (LDP) solution.

Intuitively, a function f is differentially private if its probab-

ility of producing a particular output is not sensitive to whether

a specific data entry is included in its input: given any two

datasets D, D′ differing by a single entry and any output O, it

holds that Pr(f(D) ∈ O) ≤ exp(ε) ·Pr(f(D′) ∈ O), where ε
is the “budget” controlling the tolerable privacy loss. We may

specify such budget for each parameter and randomize its local

gradient using the Laplacian or Gaussian mechanisms [6].

Despite its simplicity, this mechanism suffers low model

utility. Specifically, applying DP requires estimating the global
sensitivity: how the randomization of the input impacts the

global output. However, in MDL, due to lacking the knowledge

about others’ data, it is extremely obscure for a worker to

estimate the influence of its input to the global model. There-

fore, overly conservative noise needs to be injected, resulting

in significant utility loss in the global model. Such utility loss

is consequential for accuracy-demanding domains [19].

C. Enhanced Design

To mitigate this issue, we integrate the LDP mechanism with

a coordination mechanism. Our design is motivated by the

following observations. Most DP mechanisms employ random

noise sampled from symmetric distributions (e.g., Laplace and

Gaussian); as more workers aggregate their local gradients, a

larger part of the injected noise can cancel out. Formally,

Theorem 1. Let �i denote the local gradient of the i-th worker
and ri be the differentially private noise: ri ∼ Lap(1ε ). The
estimated global gradient 1

|A|
∑

Ai∈A(�
i + ri) is a random

variable with mean 1
|A|

∑
Ai∈A�i and variance 2

ε2·|A| .

Proof. It follows from the definition of global gradient in

Eqn. (1) and the independence of random noise {ri}Ai∈A.

Intuitively, as more workers aggregate local gradients, we

obtain better estimates of global gradients. We formalize this

intuition with the concept of ρ-visibility: an n-worker MDL

system is ρ-visible, if the global gradient of each parameter

is visible (available for download) only after it aggregates the

local gradients of at least m = ρ · n workers. The subset of

workers contributing to parameter w is called the active set of

w, denoted by Aw. Clearly, ρ-visibility enforces |Aw| ≥ ρ·|A|
for any w at any time.

We may consider ρ-visibility as another layer of privacy

protection, because it essentially enforces a generalized ab-

straction of secure aggregation [20]: the global information

is revealed only when it has included the local information

from a sufficient number of individuals. It is also noted that

ρ-visibility does not compromise the protection offered by the

LDP mechanism, as it is applied in the post-processing stage

of LDP. Therefore, they can be integrated in synergy, which

we name as the ∝MDL mechanism.

Next we discuss a few instantiations of ρ-visibility to show

the tradeoff between model utility and training efficiency.

D. Implications of Rho-Visibility

As more workers aggregate local gradients, we obtain more

accurate global gradients, leading to better utility of the global

model. However, this improvement is not free: the synchron-

ization among more workers at every epoch implies higher

computational and communication costs per epoch. Given the

assumption that the global model converges roughly within

a fixed number of epochs (which is empirically validated in

Section VI), more synchronization results in higher overall

training cost. Thus, there exists inherent tradeoff between

model utility and training efficiency, as shown in Figure 3.

Concretely, ρ = 1 corresponds to a synchronous protocol.

After each training epoch, the workers contribute their local

gradients to estimating the global gradient. The global gradient

is computed in a privacy-preserving manner, which ensures

that each worker only learns the global gradient without

knowing the local gradients of other workers.

Meanwhile, ρ = 1
n entails an asynchronous protocol [5],

wherein the workers perform the training in a collaborative yet

uncoordinated manner. In specific, after finishing an epoch,

each worker asynchronously uploads its local gradient to

the manager, downloads the gradients contributed by other

workers, and updates its local model.

Finally, 1
n < ρ < 1 corresponds to a hybrid protocol, which

features better model utility than asynchronous protocols and

lower training cost than synchronous protocols. Therefore, the

operator is able to balance model utility and training efficiency

by adjusting ρ.

E. ∝MDL: A Nutshell View

At the core of ∝MDL is a novel use of lightweight homo-

morphic encryption and threshold secret sharing to construct

a gradient exchange protocol. In a nutshell, each worker Ai is

assigned a private key ski and all the workers share a public

key pk. For each parameter w, Ai encrypts its local gradient

�i
w as Encpk

[
exp

(
�i

w

)]
. The multiplicative homomorphism

entails:
∏

i Encpk
[
exp

(
�i

w

)]
= Encpk

[
exp

(∑
i�i

w

)]
. The

aggregated ciphertext thus encodes the summation of local

gradients of active workers, which is equivalent to the global

150815051444
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Figure 3: Tradeoff of model utility and training efficiency.

gradient. If at least m (m = ρ · n) workers have contributed

local gradients, the global gradient is automatically decrypt-

able, thereby available for all the workers to access; otherwise,

the global gradient is invisible.

Although existing cryptosystems (e.g. [21], [22], [23]) also

meet the requirement that more than a threshold number of

workers are required to decrypt the ciphertext, our setting

differs in significant ways. First, existing schemes implicitly

assume that the set of active workers are known in advance. In

MDL setting, the active workers are determined on the fly; each

worker may contribute to different sets of parameters during

different epochs. Second, existing schemes require multiple

rounds of communication among the active workers, which

is costly for the setting of a large number of parameters

and active workers. Finally, exiting schemes are designed to

encrypt and decrypt a fixed secret message, while in our

target setting, the secret message (i.e., the summation of local

gradients) is dynamically constructed by the active workers.

Next we detail two variants of ∝MDL operating under tight

and loose coordination respectively. The symbols used in the

following are summarized in Table I.

IV. ∝MDLC

A. Overview

In ∝MDLc, the workers are shepherded by the manager to

perform training in a semi-synchronous manner. Specifically,

∝MDLc involves the following operations (without loss of

generality, we consider a specific parameter w)

• Setup - A trusted authority T (e.g., certificate authority)

generates cryptographic keys, announces the public keys,

and distributes the private keys to the workers.

• Training - Each worker Ai (i = 1, 2, . . . , n) independ-

ently trains the model over its private data and derives the

local gradient �i
w for each parameter w.

• Register - Ai selects a set of parameters Ri to contrib-

ute, and registers its requests with the manager M .

• Callback - If at least m workers register for w, M
invokes them to upload their local gradients; meanwhile,

once the global model is updated, M notifies these workers

to download the latest value of w (i.e., wg).

• Upload - Invoked by M , Ai uploads its local gradient

�i
w to M in a privacy-preserving manner.

Symbol Definition
n total number of workers in MDL∝

ρ visibility threshold
m minimum size of active set ρ · n
t total number of parameters in DNN
k number of parameters registered by each worker
k∗ minimum k required for MDL∝ to function
Aw active set of workers with respect to w
�i

w local gradient of w by worker Ai

Ri set of parameters registered by Ai

ci ciphertext of �i
w

zi Lagrange coefficient of Ai: zi =
∏

Aj∈Aw,j �=i

−xj

xi−xj

�g
w global gradient of w
ri random nonce of Ai

r sum of random nonce
∑

Ai∈Aw
ri

Table I. Symbols and notations.

• Download - Notified by M , Ai downloads the global

version of w (wg) and applies it to its local model.

Active Worker Manager

Training

Register

Callback (publish)

Upload

Callback (subscribe)

Download

Figure 4: Protocols of worker-manager interaction.

Note that the Setup operation only executes once, since all

keys are reusable in the following stages. The other operations

are performed during each epoch, constituting the worker-

manager interactions, as shown in Figure 4. Also note that we

assume a simple contribution-based download policy, that is,

each worker is only allowed to download the global parameters

which it contributes to. We consider developing more advanced

download policies as our ongoing research.

Algorithm 1: Trusted Authority
Input: generator g, primes p, q
// generate keys

1 s
$←− Zp;

2 public key h ← gs;
3 {(x1, s1)}ni=1 ← Shamir’s Protocol with s as secret;

// distribute keys
4 announce h and {(xi, g

si )}ni=1;
5 for i = 1, 2, . . . , n do assign si to Ai ;

B. Protocols
Below we elaborate the operations from the perspective of

each key player of ∝MDLc.
a) Trusted Authority: The trusted authority T generates

cryptographic keys. In specific, let p, q be two large primes

satisfying p = 2kq + 1 for some constant integer k. With a

random number s ∈ Zp being the secret, each worker Ai is

assigned a share (xi, si) generated by the Shamir’s protocol,

where xi is public while si is private to Ai. To set up the

ElGamal cryptosystem, let G be a cyclic group of order q (i.e.,

a subgroup of Z∗p) with g as its generator; then h = gs will be

the public key. In order not to clutter the notations, we omit

the modulo operation in the following presentation.
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Algorithm 2: Manager M
Input: public key h, generator g, public shares {gsi , xi}ni=1

/* initialization */
1 initialize global parameters;
2 while approximate optimum is not achieved yet do

/* request (register) */
3 event register by Ai to contribute to w
4 add Ai to Aw ;

/* callback (upload) */
5 event callback Aw to upload w
6 receive ci, gri from Ai;

// (i) zi � ∏
Aj∈Aw,j �=i

−xj
xi−xj

(ii) r � ∑
Ai∈Aw

ri

7 for Ai ∈ Aw do
8 send gzir to Ai;
9 receive di ← (gzir)si ;

// decrypt global gradient

10 compute �g
w = 1

|Aw| ln
(∏

Ai∈Aw
ci∏

Ai∈Aw
di

)
;

// update global parameter
11 update wg ← wg − λ�g

w ;

/* callback (download) */
12 event callback Aw to download w
13 for Ai ∈ Aw do send wg to Ai;

b) Manager: After initializing the global model (line 1),

M handles all requests and callbacks (line 2-13). It manages

an active list Aw for w, which records the workers registered

to contribute to w. On receiving the register request by Ai

for w, M adds Ai to Aw (line 4). Once all the workers finish

registration, M calls back the workers in Aw and receives from

them encrypted local gradients, one-time nonces and auxiliary

information to update w (line 6-9). In the event that w is

ready for download, M notifies the workers in Aw to receive

the latest value of wg (line 13).

c) Worker: After initializing its local model, Ai enters

the training loop. During each training epoch, Ai first decides

the parameters to which it intends to contribute (Ri) and

registers Ri with M (line 3). We will discuss the selection

of Ri shortly. Then, Ai runs SGD over its private data and

updates local parameters (line 4-5). Next Ai enters an event-

driven loop (line 6-14). In the event of callback by M to update

w, Ai uploads the encrypted local gradient ci, an encrypted

one-time nonce ri and auxiliary information to M (line 8-11);

in the event of callback to download w, Ai updates w with its

global version (line 13-14).

C. Analysis

Next we analyze the correctness, privacy and complexity

properties of ∝MDLc.

a) Correctness: We show that during each epoch, the

global gradient of parameter w can be correctly decoded, if at

least m workers contribute to it.

Theorem 2. If |Aw| ≥ m, then the global gradient of w is
correctly decryptable as 1

|Aw|
∑

Ai∈Aw
�i

w.

Proof. From the definitions of encryption procedure and mul-

tiplicative homomorphism, we have

∏
Ai∈Aw

ci = gsr exp

( ∑
Ai∈Aw

�i
w

)

Algorithm 3: Worker Ai

Input: secret share si , primes p, q
/* initialization */

1 initialize local parameters;
2 while approximate optimum is not achieved yet do

/* Ai registers to contribute to w */
3 register requests Ri with M ;

/* training */
4 run SGD on local dataset to compute {�i

w}w ;

5 for w �∈ Ri do update wi ← wi − λ�i
w ;

6 while Ri �= ∅ do
/* upload */

7 event callback by M to upload w

// local gradient, one-time nonce

8 ci ← exp(�i
w) · hri ; ri

$←− Zq;
9 send ci, gri to M ;

// auxiliary information
10 receive gzir from M ;
11 compute and send (gzir)si to M ;

/* download */
12 event callback by M to download w
13 receive wg and update wi ← wg ;
14 remove w from Ri;

where r =
∑

Ai∈Aw
ri.

Then for |Aw| ≥ m, based on the property of Shamir’s

protocol, we have∏
Ai∈Aw

di =
∏

Ai∈Aw

gsizir = gr
∑

Ai∈Aw
sizi = gsr

Thus, �g
w = 1

|Aw| ln
(∏

Ai∈Aw
ci∏

Ai∈Aw
di

)
=

∑
Ai∈Aw

�i
w

|Aw| .

Further, we show the overall correctness of the protocols

above. Particularly, we only need to prove:

Theorem 3. During any training epoch, the parameter w is
correctly updated by the worker-manager interaction.

Proof. (Sketch) During each epoch, from the perspective of

either participating worker Ai or manager M , the protocol of

updating w is strictly serial, as shown in Figure 4, consisting

of register, callback (upload), upload, callback
(download) and download. This serialism entails that Ai and

M always send and receive the correct version of w.

In current implementation, the worker Ai randomly selects

k parameters as Ri. It can derived that the probability of a

given parameter missing updates (i.e., less than m workers

register for it) in an epoch is at most
(

n
n−m+1

)
( t−k

t )n−m+1,

where t is the total number of parameters. In realistic settings,

a small k often suffices: for example, with n = 8 and m = 2,

k = 0.47 · t ensures that the missing rate is below 10%. Also

note that the minimum k (k∗) necessary for each parameter to

be updated is �m · t/n�.

b) Privacy: We desire for two types of privacy assurance

for global and local gradients respectively.

• Global gradient - If less than m workers have contributions

to w, its global gradient is undecryptable.

• Local gradient - The gradient of an individual worker is

invisible to other parties under any circumstances.

151015071446



Theorem 4. If |Aw| < m, the global gradient �g
w of w is

undecryptable.

Proof. (Sketch) We use the concepts of zero-knowledge and

simulatability [24]. The system involves the following players:

Aw, the manager M and the rest workers (collectively denoted

by Bw). Given {�i
w, ci, di, g

ri}Ai∈Aw , it is straightforward to

see that the interaction between Aw and Bw can be simulated;

more precisely, the probability distribution of the views is

simulatable. Thus, no extra information is revealed about

{si, ri}Ai∈Aw other than {ci, di, gri}Ai∈Aw .

To reveal �g
w from {ci}Ai∈Aw , the attacker needs to solve

gsr. Given the accessible information, this is equivalent to

(i) computing gsr from gs and gr (guarded by the hardness

of computational Diffie-Hellman problem), (ii) computing gsr

from {di}Ai∈Aw for |Aw| < m (guarded by the Shamir’s

protocol), or (iii) computing s (or r) from gs (or gr) (guarded

by the hardness of discrete logarithm). In other words, an

attacker that reveals �g
w implies an attacker that can efficiently

solve one of the problems above.

Further, we show the privacy guarantee for local gradients.

We consider the worst case that all other workers collude with

each other, attempting to reveal the local gradient of a victim.

Theorem 5. If |Aw| < m, the local gradient of an individual
worker in Aw is undecryptable, even if all other workers in
Aw collude with each other.

Proof. (Sketch) We again use the concept of zero-knowledge

proof. Without loss of generality, let Ai be the victim and A′w
be the remaining parties in the system. Given (�i

w, ci, di), it

is trivial to see that the interaction between Ai and A′w can

be simulated. No extra information is leaked about (si, ri)
other than (ci, di). Thus, if the computational Diffie-Hellman

problem is hard, the computation of �i
w is also hard.

c) Complexity: Since the local training often dominates

each worker’s computation load (see our empirical evaluation),

we focus our analysis on the communication complexity. In

particular, we consider the case that each worker registers

for the minimum number of parameters (k∗ = �m · t/n�).

In Algorithm 3, during each epoch, for each w ∈ Ri, Ai

exchanges a constant number of integers with M , which entails

the overall communication cost of O(�m · t/n�). Correspond-

ingly, in Algorithm 2, the communication cost of M is the

aggregated costs of all workers, i.e., O(t ·m).

V. ∝MDLD

A. Overview

At a high level, ∝MDLd departs from ∝MDLc in that it

requires little coordination among the participating workers,

thereby enabling high concurrency. In specific, for given

parameter w, ∝MDLc requires fixing the set of active workers

Aw (i.e., the regsiter operation) before allowing them to

upload the local gradients of w. In contrast, in ∝MDLd, Aw

is constructed on the fly; the workers contribute to w on a

voluntary and first-come-first-served basis.

In ∝MDLc, M updates w only if all the workers in Aw

have committed their local gradients. This restriction results

in costly delay in each epoch in cases of (i) large-size Aw

or (ii) the workers with imbalanced computation capacities.

Also it may cause the robustness issue, as the malfunction of

a single worker in Aw causes the failure of updating w. In

∝MDLd, once any m (m = ρ ·n) workers have uploaded their

local gradients of w, M is able to update w immediately. This

difference entails ∝MDLd’s significant advantage over ∝MDLc

in execution efficiency and fault tolerance.

Algorithm 4: Manager M
Input: public key h, generator g, public shares {gsi , xi}ni=1

/* initialization {...} */
1 while approximate optimum is not achieved yet do

/* request (upload) */
2 event Ai requests to contribute to w

// c-value
3 receive ci and gri from Ai ;

// z- and d-values
4 for Aj ∈ Aw do
5 update zj ← zj · −xi

xj−xi
;

6 send gsjzj to Ai and receive gsjzjri ;

7 update dj ← (dj)

−xi
xj−xi · gsjzjri ;

8 add Ai to Aw ;

9 assign zi ←
∏

Aj∈Aw,j �=i

−xj
xi−xj

;

10 send gzir to Ai, receive gsizir and assign di ← gsizir ;
11 if |Aw | ≥ m then

// decrypt global gradient

12 compute �g
w = 1

|Aw | ln
(∏

Aj∈Aw
cj∏

Aj∈Aw
dj

)
;

// update global parameter
13 update wg ← wg − λ�g

w ;

/* callback (download) {...} */

B. Protocols

Next we detail the protocols of ∝MDLd. For space limita-

tions, we omit the operations identical to ∝MDLc.

a) Manager: We focus on the operation of request
(upload), with which M handles the requests by active

workers to upload their local gradients.

In specific, Aw (for parameter w) maintains the current set

of active workers which have uploaded their encrypted local

gradients (c-values) of w. Meanwhile, M maintains two values

(z- and d-values) for each worker in Aw. As a new worker Ai

comes, besides receiving its local gradient and one-time nonce

(line 3), M interacts with Ai and updates z- and d-values for

each worker (including Ai) in Aw (line 4-10). Once m workers

have uploaded their local gradients, the global gradient �g
w is

immediately decryptable by aggregating c- and d-values of

workers in Aw (line 12). After update according to Eqn.(1),

wg is available for workers in Aw to download (line 13).

b) Worker: We focus on the operation of upload,

with which the worker Ai uploads its local gradient to M .

Specifically, Ai first encrypts its local gradient and sends the

ciphertext (c-value) and one-time nonce to M (line 3). Then

Ai interacts with M and helps update the z- and d-values

corresponding to the workers (including itself) in the current

active list Aw (line 4-7).
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Algorithm 5: Worker Ai

Input: secret share si , primes p, q
/* initialization {...} */

1 while approximate optimum is not achieved yet do
/* training {...} */
/* upload */

2 for w ∈ Ri do
// c-value, one-time nonce

3 ci ← exp(�i
w) · hri ; ri

$←− Zq ; send ci, gri to M ;

// d- and z-values
4 receive {gsjzj }Aj∈Aw from M ;

5 compute and send {gsjzjri}Aj∈Aw to M ;

6 receive gzir from M ;
7 compute and send gsizir to M ;

8 remove from Ri parameters Ai has no contributes to;
9 while Ri �= ∅ do

/* download {...} */

C. Analysis

We now analyze the correctness, privacy and complexity

properties of ∝MDLd. We also compare the strengths and

weaknesses of ∝MDLc and ∝MDLd.

a) Correctness: We first introduce the following lemmas.

Lemma 1. If |Aw| ≥ m,
∏

Ai∈Aw
(gsi)zi = gs.

Proof. It can be verified that for Ai ∈ Aw, its z-value zi =∏
Ai∈Aw,j �=i

−xj

xi−xj
. Given the property of Shamir’s protocol,

secret s can be recovered by any subset (of cardinality at

least m) of its shares, i.e., s =
∑

Ai∈Aw
sizi, which leads

to
∏

Ai∈Aw
(gsi)zi = gs.

Lemma 2. For Ai ∈ Aw, di = gsizir.

Proof. We prove this lemma using induction. Suppose that it

holds for any Aw with |Aw| ≤ l − 1 and that Ai is the l-th
worker joining Aw.

After the interaction between Ai and M , for Aj ∈ Aw

(j 	= i), we have (we use x and x′ to differentiate object x
before and after Ai is included in Aw):

d′j = (dj)
−xi

xj−xi · (gsj )z′jri = g
sjzj

−xi
xj−xi

r+sjz
′
jri = gsjz

′
jr
′

Further, by construction, we have d′i = gsiz
′
ir
′
.

Based upon these lemmas, we have the following theorem.

Theorem 6. If |Aw| ≥ m, the global gradient of w is
decryptable: �g

w = 1
|Aw| ln

(∏
Ai∈Aw

ci∏
Ai∈Aw

di

)
.

Proof. From the definition of encryption procedure, we have

∏
Ai∈Aw

ci = exp

( ∑
Ai∈Aw

�i
w

)
gsr

Then for |Aw| ≥ m, given Lemma 1 and 2 and the property

of Shamir’s protocol, we have∏
Ai∈Aw

di =
∏

Ai∈Aw

gsizir = g
∑

Ai∈Aw
sizir = gsr

leading to �g
w = 1

|Aw| ln
(∏

Ai∈Aw
ci∏

Ai∈Aw
di

)
=

∑
Ai∈Aw

�i
w

|Aw | .

The proof of the overall correctness of the protocols is

similar to Theorem 3, which we omit here.

b) Privacy: Similar to the analysis in Section IV, we

demand privacy assurance for both global and local gradients.

First, we have the following theorem that guards the privacy

of global gradients.

Theorem 7. If |Aw| < m (i.e., less than m workers contribute
local gradients), the global gradient �g

w is undecryptable.

To show the privacy protection for local gradients, again, we

assume all other parties collude with each other, attempting to

reveal the local gradient of a victim worker.

Theorem 8. In ∝MDLd, if |Aw| < m, the local gradient of
any individual worker Ai ∈ Aw is undecryptable, even if all
other workers in Aw collude with each other.

Proof. The proofs of Theorem 7 and 8 are respectively similar

to Theorem 4 and 5.

c) Complexity: We consider the case that each worker

contributes to a minimum number of parameters (i.e., k∗ =
�m · t/n�); each parameter has exactly m contributors. In

Algorithm 5, during each epoch, to update given parameter

w, the worker Ai, assumed to arrive as the l-th worker in Aw,

needs to exchange and update O(l) (i.e., on average, O(m/2))
integers with M . Thus, the average communication complexity

for each worker is O(�m2 · t/n�). In Algorithm 4, the

communication cost of M is the aggregated communication

cost across all participating workers, i.e., O(m2 · t).
d) Comparison of ∝MDLc and ∝MDLd: Compared with

∝MDLc, ∝MDLd requires less coordination, thereby achieving

higher execution efficiency. Nevertheless, this advantage is

not free. ∝MDLd features the communication complexity of

O(m2 · t), in contrast of O(m · t) in ∝MDLc, which can be

expensive for the settings of limited network bandwidth or a

large number of participating workers.

VI. EMPIRICAL EVALUATION

Next using benchmark datasets and DNN architectures, we

empirically assess the performance of individual components

and overall system of ∝MDL; we also explore the strengths

and limitations of variants of ∝MDL.

A. Experiment Setting

Our experiments used two benchmark datasets, the MNIST1

and SVHN2 datasets. The former comprises 60K training and

10K testing (28×28 grayscale) images, while the latter consti-

tutes 73K training and 26K testing (32×32 RGB) images. We

consider MNIST and SVHN respectively representing “simple”

and “hard” DL tasks. Using two disparate datasets, we intend

to capture the impact of data dimensionality over the system

performance. The private data of each worker comprises 60%

random samples from the training dataset.

1http://yann.lecun.com/exdb/mnist
2http://ufldl.stanford.edu/housenumbers
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Figure 5: Execution time of encryption and decryption.

We implemented all alternative MDL solutions on Theano3,

one of the most popular DL platforms. We considered two ma-

jor DNN architectures adapted from [5], multi-layer perception

(MLP) and convolutional neural network (CNN), both of which

have been widely used in image recognition tasks. We regard

the CNN and MLP models respectively representing “strong”

and “weak” DL models.

We contrasted the performance of alternative MDL frame-

works using three metrics, model utility, convergence rate and

training efficiency. Specifically, the model utility is measured

by its classification accuracy over the testing data; the conver-

gence rate is captured by the number of epochs necessary for

the model to converge; and the training efficiency is measured

by the end-to-end training time of the model.

The default parameter setting is as follows: the number of

workers n = 8, the visibility threshold ρ = 0.5, the learning

rate λ = 0.01, and the mini-batch size 128. Each worker is

running a 3.40 GHz processor and 16 GB RAM.

B. Experiment Results

a) Encryption and Decryption: We start by assessing the

overhead of the cryptographic machinery used by ∝MDL.

Figure 5 (a) shows how the execution time of the encryption

and decryption operations grows with the key size of the

cryptosystem. Observe that the encryption cost is proportional

to the key size, whereas the key size has minimal impact on

the decryption cost, as it only involves modular multiplication

and multiplicative inverse calculations.

Further, Figure 5 (b) shows the execution time of encryption

and decryption as a function of the number of workers n,

where we fix the key size = 256 bits and ρ = 0.5. Clearly, the

encryption cost is independent of the number of workers, while

the decryption cost grows mildly with n. In both cases, the

cryptographic operations incur fairly limited system overhead,

compared with training the local models.

b) ρ-Visibility and Local Differential Privacy: Recall that

∝MDL integrates ρ-visibility with the local differential privacy

(LDP) mechanism. In this set of experiments, we examine their

joint impact on the utility of the global model. Specifically, we

measure the classification accuracy of the trained models as

the settings of LDP and ρ-visibility vary. For LDP, we consider

the per-parameter privacy budget ε = 0.01, 0.1, 1, with smal-

ler budget implying stronger protection; for ρ-visibility, we

3http://deeplearning.net/software/theano/
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Figure 6: Synergy between differential privacy and ρ-visibility.

consider the setting of ρ = 0.125, 0.5 with larger ρ meaning

synchronization among more workers.

As shown in Figure 6, the large accuracy gap between

ε = 0.01 and 1 (ρ = 0.125) indicates the detrimental effect

of the LDP mechanism on the model utility. For instance, in

the case of CNN-SVHN, the training under ε = 0.1, 0.01 even

fails to converge. Yet, this negative impact is greatly mitigated

by increasing ρ. For example, in the case of MLP-MNIST, the

accuracy improves by 19.5% as we increase ρ = 0.125 to

0.5 under ε = 1. Interestingly, this improvement is even more

evident in the case of CNN-SVHN (333.0% accuracy boost).

This phenomenon is explained by that as more workers ag-

gregate their local gradients, due to the symmetric distribution

used in sampling random noise, a larger part of injected noise

cancels out, leading to more reliable global gradient estimates.

More complicated DNN models (e.g., CNN) tend to be more

sensitive to the reliability of such estimates.

Thus, we empirically show that ρ-visibility and LDP can

be integrated in synergy and existing DP-based PEMs can be

enhanced by ρ-visibility to achieve better utility.

c) Model Utility and Training Efficiency: Next we study

the intricate tradeoff between model utility and training effi-

ciency. We fix the LDP per-parameter budget as ε = 0.5.

Figure 7 (a) depicts the classification accuracy of ∝MDLc

converges under varying settings of ρ (from 0.125 to 1). It

is noticed that the model utility (accuracy) of ∝MDLc is,

to a large extent, determined by the combination of DNN

models and DL tasks. For instance, in the case of MLP-SVHN

(i.e., weak model versus hard task), none of the settings

of ρ leads to any satisfying accuracy; while in the case

of CNN-MLP (i.e., strong model versus easy task), ∝MDLc

converges to fairly similar accuracy under varied settings of

ρ. Meanwhile, observe that the setting of ρ also significantly

impacts the model utility under given task-model settings. For

example, in the case of CNN-SVHN, the model trained under

ρ = 1 achieves 91.4% accuracy, in comparison of 81.5%

accuracy obtained by that trained under ρ = 0.125, which
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empirically validates our analysis in Section III. Also note that

regardless of their eventual accuracy, most models converge

approximately within the same number of epochs.

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

Execution time (sec)

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

0.9

1
mlp-mnist

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1
10 10 10 10

1 2 3 40

0.2

0.4

0.6

0.8

1
cnn-svhn

(b)

(a)

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

0.9

1

MDL
MDL

d
c

∝
∝

Figure 8: Training efficiency of ∝MDLc and ∝MDLd.

We then measure the training efficiency of ∝MDLc under

varying ρ. As suggested by our analysis, larger ρ implies

higher training cost per epoch, as the manager needs to

coordinate more workers to commit local gradients. Neverthe-

less, it is observed in Figure 7 (b) that across all DNN model
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Figure 9: Execution time (250 epochs) of ∝MDL with respect

to the number of participating workers.

and DL task combinations, the increased cost is not prohibitive.

For example, in the case of CNN-SVHN, as ρ increases from

0.125 to 1, the execution time grows about 3 times. However,

in large-scale training tasks or low-end system configurations

(e.g., limited network bandwidth), a decision has to be made

to balance training efficiency and model utility.

d) ∝MDLc versus ∝MDLd: We compare the training

efficacy of the two variants of ∝MDL. Recall our analysis in

Section V that at the expense of slightly higher communication

cost, ∝MDLd achieves better training efficiency, especially

when different workers possess heterogenous computation

capacities.

Figure 8 (a) shows the execution time of ∝MDLc and

∝MDLd with ρ = 0.5. In both cases of MLP-MNIST and

CNN-SVHN, ∝MDLd converges much faster than ∝MDLc.

For example, in the case of CNN-SVHN, ∝MDLc requires

more than 27.0% of training time than ∝MDLd to reach 85%
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accuracy, which empirically validates our analysis.

We further consider the setting wherein the workers possess

imbalanced computation power. To construct this scenario,

we introduce delay in each epoch. The delay time of each

worker is drawn randomly from a worker-specific normal

distribution. In particular, we set the normal distribution for

the i-th worker to be N (5i, 1). As shown in Figure 8 (b),

∝MDLd demonstrates even more evident advantage than that

in Figure 8 (a). This implies that ∝MDLd is more suitable

for scenarios of heterogenous computation capacities. Astute

readers may point out that this may lead to the fairness issue

(i.e., workers with weaker computation power may be unable

to contribute to MDL at their will). We consider addressing

this issue one future research direction.

Also note that although it is often the case that the cost of

local training dominates the communication cost, in settings

where this premise does not hold (e.g., extremely limited

network bandwidth), the superiority of ∝MDLd may not hold

either. It is up to the MDL operators to choose the right variant

of ∝MDL for given settings.

e) Scalability: In the last set of experiments, we study the

scalability of ∝MDL with respect to the number of workers.

Figure 9 shows the training time (250 epochs) of ∝MDL as

the number of workers (n) varies from 8 to 16. We consider

two settings, m = ρ · n = 2 and m = n/2.

Observe that with fixed m, n has fairly limited impact on

the efficiency of ∝MDL. For example, the execution time of

∝MDLc increases by 1,076 seconds as n grows from 8 to 16. In

comparison, with ρ fixed, n influences the execution efficiency

of ∝MDL more significantly. For example, the running time

of ∝MDLc increases by 2,318 seconds as m grows from 4 to

8. This indicates that compared with n, m has a larger impact

on the training efficiency of ∝MDLc. Also note that compared

with ∝MDLc, ∝MDLd is much less sensitive to the setting of

n or m, thanks to its more dynamic and adaptive nature.

VII. RELATED WORK

DL proves extremely effective at learning nonlinear features

and functions from complex data. Besides beating records in

image recognition, text classification, and natural language un-

derstanding [1], DL outperforms traditional machine learning

in healthcare domains, e.g., predicting the effect of mutations

in non-coding DNA [25]. The training data in such applications

is often highly sensitive, thus requiring incorporating effective

privacy enhancing mechanisms (PEMs). Our goal is to protect

the input privacy of participating parties in MDL; thus PEMs

designed for protecting model privacy [26], [27] and output

privacy [28] well complement this work.

Techniques using secure multiparty computation (SMC) help

protect input privacy of multiple parties when they collab-

oratively train machine learning models on their proprietary

data. SMC has been applied to design algorithm-specific PEMs,

e.g., linear regression functions [12], association rule [11]

and Naı̈ve Bayes classifiers [29]. However, most of carefully

engineered SMC protocols incur non-trivial performance over-

head, not to mention general-purpose SMC [16], [30]. Thus,

the application of SMC to DL remains an open question.

As the de facto privacy definition, differential privacy (DP)

[6] has also been applied to construct PEMs, e.g., principal

component analysis [31], regression [32], risk minimiza-

tion [18] and neural network [33], [34]. However, most of

these PEMs are designed for the setting of centralized data

repositories, thus inapplicable for MDL.

The most relevant work is perhaps to adapt stochastic

gradient descent to the multiparty setting [5]. Iteratively, each

party partially shares its local model with others and applies

the updated global model to its private data. However, it

is unclear how much sensitive information is leaked in the

revealed local models. One solution to this indirect leakage

is to apply DP during training local models; yet, this leads to

significant utility loss in the global model. ∝MDL addresses

this issue by seamlessly integrating with DP in synergy,

yielding PEMs with strong privacy assurance and desirable

model utility simultaneously.

VIII. CONCLUSION & FUTURE WORK

This work presents the design, implementation and evalu-

ation of a new MDL paradigm which departs from prior work

with a series of distinct features: (i) it provides strong privacy

assurance and desirable model utility simultaneously; (ii) it

offers an intuitive handle for practitioners to balance model

utility and training efficiency; (iii) it also enables delicate

control over communication and computational costs, thus

optimizable for given system settings.

This work also opens several directions for further invest-

igations. For example, in current implementation, we use a

simple contribution-based download policy. It is worth to study

more complicated policies and their impact on the system per-

formance. It is also interesting to explore cryptosystems other

than ElGamal (e.g., Paillier [35] natively supports additive ho-

momorphism), which may further improve training efficiency.

Further, while ∝MDLd adapts to the setting of participating

parties with imbalanced computation capacities, we need to

address the potential fairness issue of unequal contributions

by different parties. Finally, each session of worker-manager

interactions is implemented as a meta transaction. It is possible

to design protocols that interleave multiple sessions, with the

hope of achieving even higher concurrency.
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